Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.
Определение.
Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).
Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.
То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.
Таким образом, S(G) = ʃ а b f(x)dx.
В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.
Пример 1.
Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.
Решение.
Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.
Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.
Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:
{у = х 3 ,
{у = 1.
Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.
Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).
Ответ: 11/4 кв. ед.
Пример 2.
Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.
Решение.
Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции
у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.
Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:
{у = √х,
{у = 2.
Таким образом, имеем, что х = 4 = а – это нижний предел.
Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).
Ответ: S = 2 2/3 кв. ед.
Пример 3.
Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.
Решение.
Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:
y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.
Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.
Определим точки пересечения графика с осями координат:
если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;
если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).
Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.
Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.
Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то
S = |ʃ 0 2 (x 3 – 4x)dx|.
Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.
Ответ: S = 4 кв. ед.
Пример 4.
Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.
Решение.
Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.
Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.
Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.
Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.
Построим фигуру, ограниченную линиями:
у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.
Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:
x b = 2/4 = 1/2;
y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).
Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.
Имеем: S О A В D = S OABC – S ADBC .
Найдем координаты точки D из условия:
6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.
Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,
S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.
S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).
Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).
Ответ: S = 1 1/4 кв. ед.
Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Вам понадобится
- - неправильная геометрическая фигура;
- - измерительные инструменты;
- - прозрачный пластик;
- - линейка;
- - угольник;
- - шариковая ручка.
Инструкция
Рассмотрите геометрическую фигуру и определите, ее параметры вам известны. Это могут быть длины сторон или углы. В зависимости от заданных параметров и выберите способ определения площади. Например, разделите ее на несколько фигур, формулы вычисления площади которых вы . Один из самых распространенных методов - провести диагонали из одного угла ко всем остальным вершинам. В этом случае вам нужно знать формулу вычисления площади произвольного треугольника. Но никто не запрещает разделить заданную фигуру и на другие многоугольники. Например, при расчете площади пола в комнате с нишей удобнее разделить неправильную фигуру на два прямоугольника или квадрата.
Для определения площади не слишком большой детали можно воспользуйтесь палеткой. Ее можно . Отрежьте прямоугольный кусок любого прозрачного пластика. Разделите его на квадраты, площадь которых вам известна - например, 1х1 или 0,5х0,5 см. Линейка и угольник должны быть точными. Наложите палетку на деталь. Сосчитайте полные , затем - . Количество неполных квадратов разделите на 2 и приплюсуйте результат к числу целых. Чем мельче деления на палетке - тем точнее будет результат. Аналогично можно посчитать и площадь участка. Роль палетки будет выполнять сетка из квадратов со стороной 1х1 м, начерченная на земле или отмеченная колышками с протянутыми между ними шнурами. Можно ограничиться и разметкой территории на полосы. .
С крупными площадями можно поступить и иначе. Возьмите максимально точный план участка или придомовой территории. Определите масштаб. Воспользуйтесь одним из предложенных способов. Затем полученное количество квадратных сантиметров переведите в нужный масштаб.
Полезный совет
При изготовлении плоских деталей из металла можно вычислить их площадь по эталону с помощью взвешивания. Вырежьте саму деталь и эталон - квадратик, площадь которого удобно рассчитать. Делать их необходимо из одного и того же материала, причем толщина листа должна быть одинаковой и при этом незначительной. Вычислите соотношение масс, а по ней - неизвестную площадь. Однако это не очень точный способ и применять его можно только в крайних случаях.
Любую неправильную фигуру можно представить в виде графика. Каждая точка имеет свои координаты. Представьте каждый отрезок как график функции. Площадь участка от абсциссы до него являет собой определенный интеграл. Высчитайте все интегралы. Площадь фигуры определите с помощью разности интегралов с большим и меньшим значением. Это довольно трудоемкий метод, но он дает наибольшую точность.
Каждый человек представляет, что такое площадь комнаты, площадь участка земли, площадь поверхности, которую надо покрасить. Он также понимает, что если земельные участки одинаковы, то площади их равны; что площадь квартиры складывается из площади комнат и площади других ее помещений.
Это обыденное представление о площади используется при ее определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому, когда говорят о площади, выделяют определенный класс фигур.
Например, рассматривают площадь многоугольника, площадь произвольной плоской фигуры, площадь поверхности многогранника и др. В нашем курсе речь будет идти только о площади многоугольника и произвольной плоской фигуры.
Так же, как и при рассмотрении длины отрезка и величины угла, будем использовать понятие «состоять из», определяя его следующим образом: фигура F состоит (составлена) из фигур F 1 и F 2 , если она является их объединением и у них нет общих внутренних точек.
В этой же ситуации можно говорить, что фигура F разбита на фигуры F 1 и F 2 . Например, о фигуре F, изображенной на рисунке 2, а, можно сказать, что она состоит из фигур F 1 и F 2 , поскольку они не имеют общих внутренних точек. Фигуры F 1 и F 2 на рисунке 2, b имеют общие внутренние точки, поэтому нельзя утверждать, что фигура F состоит из фигур F 1 и F 2 . Если фигура F состоит из фигур F 1 и F 2 , то пишут: F=F 1 Å F 2 .
Определение. Площадью фигуры называется положительная величина, определенная для каждой фигуры так, что: 1) равные фигуры имеют равные площади; 2) если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, такой единицей является площадь квадрата со стороной, равной единичному отрезку. Условимся площадь единичного квадрата обозначать буквой Е, а число, которое получается в результате измерения площади фигуры – S(F). Это число называют численным значением площади фигуры F при выбранной единице площади Е. Оно должно удовлетворять условиям:
1. Число S(F) — положительное.
2. Если фигуры равны, то равны численные значения их площадей.
3. Если фигура F состоит из фигур F 1 и F 2 , то численное значение площади фигуры равно сумме численных значений площадей фигур F 1 и F 2 .
4. При замене единицы площади численное значение площади данной фигуры F увеличивается (уменьшается) во столько же раз, во сколько новая единица меньше (больше) старой.
5. Численное значение площади единичного квадрата принимается равным 1, т.е. S(F) = 1.
6. Если фигура F 1 является частью фигуры F 2 , то численное значение площади фигуры F 1 не больше численного значения площади фигуры F 2 , т.е. F 1 Ì F 2 Þ S (F 1) ≤ S (F 2) .
В геометрии доказано, что для многоугольников и произвольных плоских фигур такое число всегда существует и единственно для каждой фигуры.
Фигуры, у которых площади равны, называются равновеликими.
⇐ Предыдущая135136137138139140141142Следующая ⇒
Читайте также:
Как посчитать площадь фигуры
В задачах по геометрии зачастую требуется посчитать площадь плоской фигуры. В заданиях по стереометрии традиционно вычисляют площадь граней. Обнаружить площадь фигуры неоднократно необходимо и в быту, скажем, при расчете числа нужных стройматериалов. Для определения площади простейших фигур имеются особые формулы. Впрочем, если фигура имеет трудную форму, то посчитать ее площадь изредка бывает не так-то легко.
Вам понадобится
- калькулятор либо компьютер, линейка, рулетка, транспортир
Инструкция
1. Дабы посчитать площадь примитивный фигуры, воспользуйтесь соответствующими математическими формулами:для расчета площади квадрата, возведите в вторую степень длину его стороны:Пкв = с?,где: Пкв – площадь квадрата, с – длина его стороны;
2. для нахождения площади прямоугольника, перемножьте длины его сторон:Ппр = д * ш,где: Ппр – площадь прямоугольника, д и ш – соответственно, его длина и ширина;
3. дабы узнать площадь параллелограмма, умножьте длину всякий из его сторон на длину высоты, опущенной на эту сторону.Если вестимы дины смежных сторон параллелограмма и угол между ними, то перемножьте длины этих сторон на синус угла между ними:Ппар = С1 * В1 = С2 * В2 = С1 * С2 * sin?,где: Ппар — площадь параллелограммаС1 и С2 – длины сторон параллелограмма,В1 и В2 – соответственно, длины опущенных на них высот,? – величина угла между смежными сторонами;
4. дабы обнаружить площадь ромба,умножьте длину стороны на длину высотыилиумножьте квадрат стороны ромба на синус всякого его углаилиперемножьте длины его диагоналей и поделите полученное произведение на два:Промб = С * В = С? * sin? = Д1 * Д2,где: Промб – площадь ромба, С – длина стороны, В – длина высоты, ? – величина угла между смежными сторонами, Д1 и Д2 – длины диагоналей ромба;
5. дабы посчитать площадь треугольника,умножьте длину стороны на длину высоты и поделите полученное произведение на два,илиумножьте половину произведения длин 2-х сторон на синус угла между ними,илиумножьте полупериметр треугольника на радиус вписанной в треугольник окружности,илиизвлеките квадратный корень из произведения разностей полупериметра треугольника и всякой из его сторон (формула Герона):Птр = С * В / 2 = ? * С1 * С2 * sin? = п * р = ?(п*(п-С1)*(п-С2)*(п-С3)),где: С и В – длина произвольной стороны и опущенной на нее высоты,С1, С2, С3 – длины сторон треугольника,?
Площадь фигур
– величина угла между сторонами (С1, С2),п – полупериметр треугольника: п = (С1+С2+С3)/2,р – радиус вписанной в треугольник окружности;
7. для расчета площади круга умножьте квадрат его радиуса на число «пи», приблизительно равное 3,14:Пкр = ? * р?,где: р – радиус круга, ? – число «пи» (3,14).
8. Для расчета площади больше трудных фигур, разбейте их на несколько непересекающихся больше примитивных фигур, обнаружьте площадь всякой из них и сложите полученные итоги. Изредка площадь фигуры проще посчитать как разность площадей 2-х (либо нескольких) примитивных фигур.
Видео по теме
Площадь сложной фигуры. 5-й класс
Две фигуры называют равными, если одну их них можно так наложить на другую, что эти фигуры совпадут.Площади равных фигур равны. Их периметры тоже равны.Площадь квадратаДля вычисления площади квадрата нужно умножить его длину на саму себя.
S = a aПример:SEKFM = EK EK
SEKFM = 3 3 = 9 см2
Формулу площади квадрата, зная определение степени, можно записать следующим образом:
S = a2Площадь прямоугольникаДля вычисления площади прямоугольника нужно умножить его длину на ширину.
S = a bПример:SABCD = AB BC
SABCD = 3 7 = 21 см2
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.Площадь сложных фигурПлощадь всей фигуры равна сумме площадей её частей.Задача: найти площадь огородного участка.Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя правило выше.Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.SABCE = AB BC
SEFKL = 10 3 = 30 м2
SCDEF = FC CD
SCDEF = 7 5 = 35 м2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.S = SABCE + SEFKL
S = 30 + 35 = 65 м2
Ответ: S = 65 м2 — площадь огородного участка.Свойство ниже может вам пригодиться при решении задач на площадь.Диагональ прямоугольника делит прямоугольник на два равных треугольника.Площадь любого из этих треугольников равна половине площади прямоугольника.Рассмотрим прямоугольник:АС — диагональ прямоугольника ABCD.
Найдём площадь треугольников ABC и ACD.Вначале найдём площадь прямоугольника по формуле.SABCD = AB BC
SABCD = 5 4 = 20 см2
S ABC = SABCD: 2
S ABC = 20: 2 = 10 см2
Существует бесконечное количество плоских фигур самой разной формы, как правильных, так и неправильных. Общее свойство всех фигур - любая из них обладает площадью. Площади фигур - это размеры части плоскости, занимаемой этими фигурами, выраженные в определенных единицах. Величина эта всегда бывает выражена положительным числом. Единицей измерения служит площадь квадрата, чья сторона равняется единице длины (например, одному метру или одному сантиметру). Приблизительное значение площади любой фигуры можно вычислить, умножив количество единичных квадратов, на которые она разбита, на площадь одного квадрата.
Другие определения данного понятия выглядят следующим образом:
1. Площади простых фигур - скалярные положительные величины, удовлетворяющие условиям:
У равных фигур - равные величины площадей;
Если фигура делится на части (простые фигуры), то ее площадь - сумма площадей данных фигур;
Квадрат, имеющий стороной единицу измерения, служит единицей площади.
2. Площади фигур сложной формы (многоугольников) - положительные величины, имеющие свойства:
У равных многоугольников - одинаковые величины площадей;
В случае, если многоугольник составляют несколько других многоугольников, его площадь равняется сумме площадей последних. Это правило справедливо для неперекрывающихся многоугольников.
В качестве аксиомы принято утверждение, что площади фигур (многоугольников) - положительные величины.
Определение площади круга дается отдельно как величины, к которой стремится площадь вписанного в окружность данного круга - при том, что число его сторон стремится к бесконечности.
Площади фигур неправильной формы (произвольных фигур) не имеют определения, определяются лишь способы их вычисления.
Вычисление площадей уже в древности было важной практической задачей при определении размеров земельных участков. Правила вычисления площадей за несколько сотен лет были сформулированы греческими учеными и изложены в «Началах» Евклида как теоремы. Интересно, что правила определения площадей простых фигур в них - те же, что и в настоящее время. Площади имеющих криволинейный контур, рассчитывались с применением предельного перехода.
Вычисление площадей простых прямоугольника, квадрата), знакомых всем со школьной скамьи, достаточно просто. Необязательно даже запоминать содержащие буквенные обозначения формулы площадей фигур. Достаточно помнить несколько простых правил:
2. Площадь прямоугольника вычисляется умножением его длины на ширину. При этом необходимо, чтобы длина и ширина были выражены в одних и тех же единицах измерения.
3. Площадь сложной фигуры вычисляем, разделив ее на несколько простых и сложив полученные площади.
4. Диагональ прямоугольника делит его на два треугольника, чьи площади равны и равняются половине его площади.
5. Площадь треугольника вычисляется как половина произведения его высоты и основания.
6. Площадь круга равняется произведению квадрата радиуса на всем известное число «π».
7. Площадь параллелограмма вычисляем как произведение смежных сторон и синуса лежащего между ними угла.
8. Площадь ромба - ½ результата умножения диагоналей на синус внутреннего угла.
9. Площадь трапеции находим умножением ее высоты на длину средней линии, которая равняется среднему арифметическому оснований. Другой вариант определения площади трапеции - перемножить ее диагонали и синус лежащего между ними угла.
Детям в начальной школе для наглядности часто даются задания: найти площадь нарисованной на бумаге фигуры с помощью палетки или листа прозрачной бумаги, разграфленной на клеточки. Такой лист бумаги накладывается на измеряемую фигуру, считается число полных клеточек (единиц площади), поместившихся в ее контуре, затем число неполных, которое делится пополам.
Площади геометрических фигур - численные значения, характеризующие их размер в двумерном пространстве. Эта величина может измеряться в системных и внесистемных единицах. Так, например, внесистемная единица площади - сотка, гектар. Это в том случае, если измеряемой поверхностью является участок земли. Системная же единица площади - квадрат длины. В системе СИ принято считать, что единица площади плоской поверхности - это квадратный метр. В СГС единица площади выражается через квадратный сантиметр.
Геометрия и формулы площадей неразрывно связаны. Эта связь заключается в том, что вычисление площадей плоских фигур основывается именно на их применении. Для многих фигур выведены несколько вариантов, по которым вычисляются их квадратные размеры. Опираясь на данные из условия задачи, мы можем определить максимально простой способ для решения. Тем самым облегчить расчет и свести вероятность ошибки вычисления к минимуму. Для этого рассмотрим основные площади фигур в геометрии.
Формулы для нахождения площади любого треугольника представлены несколькими вариантами:
1) Площадь треугольника рассчитывается по основанию a и высоте h. Основанием считают сторону фигуры, на которую опущена высота. Тогда площадь треугольника:
2) Площадь прямоугольного треугольника рассчитывается точно также, если гипотенузу считать основанием. Если же за основание принять катет, то площадь прямоугольного треугольника будет равна уменьшенному вдвое произведению катетов.
На этом формулы для вычисления площади любого треугольника не заканчиваются. Другое выражение содержит стороны a,b и синусоидальную функцию угла γ, заключенного между a и b. Значение синуса находится по таблицам. Также его можно узнать с помощью калькулятора. Тогда площадь треугольника:
По данному равенству тоже можно убедиться в том, что площадь прямоугольного треугольника определяется через длины катетов. Т.к. угол γ - прямой, поэтому площадь прямоугольного треугольника рассчитывается без умножения на функцию синуса.
3) Рассмотрим частный случай - правильный треугольник, у которого сторона a известна по условию или ее длина найдется при решении. О фигуре в задаче по геометрии больше ничего не известно. Тогда площадь как найти при этом условии? В этом случае применяется формула для площади правильного треугольника:
Прямоугольник
Как найти площадь прямоугольника и использовать при этом размеры сторон, имеющих общую вершину? Выражение для вычисления такое:
Если для вычисления площади прямоугольника требуется использовать длины диагоналей, то тогда понадобится функция синуса угла, образованного при их пересечении. Такая формула площади прямоугольника имеет вид:
Квадрат
Площадь квадрата определяют как вторую степень длины стороны:
Доказательство вытекает из определения, согласно которому квадратом называют прямоугольник. У всех сторон, образующих квадрат, одинаковые размеры. Поэтому вычисление площади такого прямоугольника сводится к перемножению одной на другую, т. е. ко второй степени стороны. И формула для вычисления площади квадрата примет искомый вид.
Площадь квадрата можно найти другим способом, например, если использовать диагональ:
Как вычислить площадь фигуры, которая образована частью плоскости, ограниченной окружностью? Для расчета площади формулы такие:
Параллелограмм
Для параллелограмма формула содержит линейные размеры стороны, высоты и математическое действие - умножение. Если же высота неизвестна, то тогда как найти площадь параллелограмма? Есть еще один способ вычисления. Потребуется определенное значение, которое примет тригонометрическая функция угла, образованного смежными сторонами, а также их длины.
Формулы площади параллелограмма таковы:
Ромб
Как найти площадь четырехугольника, называемого ромбом? Площадь ромба определяется с помощью простых математических действий с диагоналями. Доказательство опирается на тот факт, что отрезки диагоналей в d1 и d2 пересекаются под прямым углом. По таблице синусов видно, что для прямого угла данная функция равна единице. Поэтому площадь ромба рассчитывается так:
Еще площадь ромба может быть найдена другим способом. Доказать это тоже нетрудно, если учесть, что стороны его одинаковы по длине. Затем подставить их произведение в похожее выражение для параллелограмма. Ведь частным случаем именно этой фигуры является ромб. Здесь γ - внутренний угол ромба. Площадь ромба определяют так:
Трапеция
Как найти площадь трапеции через основания (a и b), если в задаче указаны их длины? Здесь без известного значения длины высоты h вычислить площадь такой трапеции не удастся. Т.к. эту величину содержит выражение для вычисления:
Квадратный размер прямоугольной трапеции тоже можно вычислить таким же способом. При этом учитывают, что в прямоугольной трапеции понятия высоты и боковой стороны объединены. Поэтому для прямоугольной трапеции нужно указывать вместо высоты длину боковой стороны.
Цилиндр и параллелепипед
Рассмотрим что нужно, чтобы рассчитать поверхность всего цилиндра. Площадь данной фигуры составляет пара кругов, называемых основаниями, и боковая поверхность. Окружности, образующие круги имеют длины радиусов, равные r. Для площади цилиндра имеет место такое вычисление:
Как найти площадь параллелепипеда, который состоит из трех пар граней? Его измерения совпадают с конкретной парой. Грани, находящиеся противоположно, имеют одинаковые параметры. Сначала находят S(1), S(2), S(3) - квадратные размеры неравных граней. Затем уже площадь поверхности параллелепипеда:
Кольцо
Две окружности с общим центром образуют кольцо. Они же ограничивают площадь кольца. При этом обе расчетные формулы учитывают размеры каждой окружности. Первая из них, вычисляющая площадь кольца, содержит больший R и меньший r радиусы. Чаще их называют внешним и внутренним. Во втором выражении площадь кольца рассчитывается через больший D и меньший d диаметры. Таким образом, площадь кольца по известным радиусам рассчитывают так:
Площадь кольца, с использованием длин диаметров, определяют следующим образом:
Многоугольник
Как найти площадь многоугольника, форма которого не является правильной? Общей формулы для площади таких фигур нет. Но если она изображена на координатной плоскости, например, это может быть клетчатая бумага, тогда как найти площадь поверхности в этом случае? Тут применяют способ, который не требует приблизительно измерить фигуру. Поступают так: если нашли точки, которые попадают в уголок клетки или имеют целые координаты, то учитывают только их. Чтобы затем выяснить, чему равна площадь, используют формулу, доказанную Пиком. Необходимо сложить количество точек, расположенных внутри ломаной линии с половиной точек, лежащих на ней, и вычесть единицу, т. е. вычисляется это таким образом:
где В,Г - количество точек, расположенных внутри и на всей ломаной линии соответственно.